Improving Structure MCMC for Bayesian Networks through Markov Blanket Resampling

نویسندگان

  • Chengwei Su
  • Mark E. Borsuk
چکیده

Algorithms for inferring the structure of Bayesian networks from data have become an increasingly popular method for uncovering the direct and indirect influences among variables in complex systems. A Bayesian approach to structure learning uses posterior probabilities to quantify the strength with which the data and prior knowledge jointly support each possible graph feature. Existing Markov Chain Monte Carlo (MCMC) algorithms for estimating these posterior probabilities are slow in mixing and convergence, especially for large networks. We present a novel Markov blanket resampling (MBR) scheme that intermittently reconstructs the Markov blanket of nodes, thus allowing the sampler to more effectively traverse low-probability regions between local maxima. As we can derive the complementary forward and backward directions of the MBR proposal distribution, the Metropolis-Hastings algorithm can be used to account for any asymmetries in these proposals. Experiments across a range of network sizes show that the MBR scheme outperforms other state-of-the-art algorithms, both in terms of learning performance and convergence rate. In particular, MBR achieves better learning performance than the other algorithms when the number of observations is relatively small and faster convergence when the number of variables in the network is large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

A Probabilistic Knowledge Base Using Annotated Bayesian Network Features

The probabilistic modeling of a high dimensional domain includes the modeling of the joint distribution over the domain variables on numeric, qualitative and possibly causal levels. Additionally, it includes the combination of statistical data with domain knowledge acquired from experts and the usage of the result in a decision theoretic framework. We overview the Bayesian network representatio...

متن کامل

Learning Bayesian Network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search

In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search. The experiments will be carried out on three real life credit scoring data sets. It will be shown that M...

متن کامل

Discovering Structure in Continuous Variables Using Bayesian Networks

We study Bayesian networks for continuous variables using nonlinear conditional density estimators. We demonstrate that useful structures can be extracted from a data set in a self-organized way and we present sampling techniques for belief update based on Markov blanket conditional density models.

متن کامل

On using Bayesian networks for complexity reduction in decision trees

In this paper we use the Bayesian network as a tool of explorative analysis: its theory guarantees that, given the structure and some assumptions, the Markov blanket of a variable is the minimal conditioning set through which the variable is independent from all the others. We use the Markov blanket of a target variable to extract the relevant features for constructing a decision tree (DT). Our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016